Exact bounds for steepest descent algorithms of L-convex function minimization

نویسندگان

  • Kazuo Murota
  • Akiyoshi Shioura
چکیده

We analyze minimization algorithms for L\-convex functions in discrete convex analysis, and establish exact bounds for the number of iterations required by the steepest descent algorithm and its variants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Steepest Descent Algorithms for Discrete Convex Functions

This paper investigates the complexity of steepest descent algorithms for two classes of discrete convex functions, M-convex functions and L-convex functions. Simple tie-breaking rules yield complexity bounds that are polynomials in the dimension of the variables and the size of the effective domain. Combination of the present results with a standard scaling approach leads to an efficient algor...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Discrete L-/M-Convex Function Minimization Based on Continuous Relaxation

We consider the problem of minimizing a nonlinear discrete function with L-/M-convexity proposed in the theory of discrete convex analysis. For this problem, steepest descent algorithms and steepest descent scaling algorithms are known. In this paper, we use continuous relaxation approach which minimizes the continuous variable version first in order to find a good initial solution of a steepes...

متن کامل

A Modified Algorithm of Steepest Descent Method for Solving Unconstrained Nonlinear Optimization Problems

The steepest descent method (SDM), which can be traced back to Cauchy (1847), is the simplest gradient method for unconstrained optimization problem. The SDM is effective for well-posed and low-dimensional nonlinear optimization problems without constraints; however, for a large-dimensional system, it converges very slowly. Therefore, a modified steepest decent method (MSDM) is developed to dea...

متن کامل

Submodularity on a Tree: Unifying $L^\natural$ -Convex and Bisubmodular Functions

We introduce a new class of functions that can be minimized in polynomial time in the value oracle model. These are functions f satisfying f(x) + f(y) ≥ f(x ⊓ y) + f(x ⊔ y) where the domain of each variable xi corresponds to nodes of a rooted binary tree, and operations ⊓,⊔ are defined with respect to this tree. Special cases include previously studied L-convex and bisubmodular functions, which...

متن کامل

SVM-Optimization and Steepest-Descent Line Search

We consider (a subclass of) convex quadratic optimization problems and analyze decomposition algorithms that perform, at least approximately, steepest-descent exact line search. We show that these algorithms, when implemented properly, are within ǫ of optimality after O(log 1/ǫ) iterations for strictly convex cost functions, and after O(1/ǫ) iterations in the general case. Our analysis is gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014